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Influence of extratropical stratosphere water vapor on
global climate
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Gettleman et al. 2010:

18 Coupled Chemistry-climate models project an increase of
stratospheric water vapor in both tropics and extratropics (0.5-1 ppmv/
century due to 1 K/century increase in cold point temperature (CPT) .

Many models and the multi- model mean can now broadly reproduce
recently observed decreases in (tropical) lower stratospheric water
vapor, likely related to SST variability.

relative H,O trend (%/dec), 1960-2100

50
70 J

100f? 3

ity

250:2‘“”.” Y

pressure (hPa)
o
o
]

500k " N\ -

latitude



However, reanalysis, satellite and in situ data have shown rather
large discrepancies in variability of the water vapor in the
extratropical lower stratosphere:

NH (20-70N):

* Boulder balloon sound, ERA-I
and WCAM show an increase
of water vapor, also IPCC AR5
shows 1.0£0.2 ppm over
16-26Km for 1980-2011.

 Combined satellite data: no-
trend.

SH water vapor

* ERA-I: increasing water vapor

* Merged satellite data:
decreasing trend
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Figure 1. Time series of H20 anomalies (unit: ppmv) in the NH (20-70N) and SH
(20-70S) at 390K; Boulder Balloon observations (390-450K average).



* How reliable is the future projection?

— How well can current climate models capture
water vapor variability in the extratropical
stratosphere?

— How well can we observe and understand water
vapor variability and change in the extratropical
stratosphere?



Observations, reanalysis and models:

» SWOOSH (monthly, 1984-present, water vapor data from the
SAGE I, UARS HALOE, UARS MLS, and Aura MLS satellite

instruments);
» Boulder Balloon (40N, 1980-present);

» Reanalysis: ERA-Interim (1979-present), MERRA (1979-
present)

» Models: WACCM4, GISS ModelE historical simulations



What could cause the data-model
discrepancy?

* Uncertainty in cross-tropopause transport?

* Uncertainty in changes of tropopause temperature
and convective transport?



SH extratropical LS water vapor variations is controlled by the
local cold points and water vapor variability in the tropics.
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NH extratropical LS water vapor variations is mainly controlled
by cross-tropopause transport within extratropics.
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Relative importance between Asian
and N. American monsoon:

e Partial Least square
regression remove
the contribution of
correlated fields;

* Water vapor
transport in Asian
monsoon dominate
the NH extratropical
LS water vapor
variability.
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Figure 3. Partial Least Square lagged regression between H20 anomalies at 390K over Asian monsoon
region (left) and North American monsoon region (right) with zonal mean H20 using MLS daily data from

2005-2013. Black dots represent the correlation is 95% significant using bootstrap calculations.



What might cause the discrepancy between observation,

* ERA-I shows too
weak correlation
between H,0 and
tropopause T in the
Asian monsoon
region.

WCAM and GISS
appears to capture
the observed
relationship
between H,O and
tropopause T.

reanalysis and models?
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What cause the discrepancy o -(a)100hPaTanom?Iies PDF.(%) (ERA-Interim)
: du—| —1979-1996
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What cause the discrepancy between the models and
satellite observations?

* WCAM and GISS models would simulate drying trends if they
were able to capture the cooling of the tropopause
temperatures in recent decades.
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Summary

Interannual and decadal variations of the NH extratropical LS
water vapor appear to be dominated by the tropopause
temperature in the Asian monsoon region, whereas those of SH
appear to be dominated by tropical tropopause temperature.

In ERA-I and MERRA, the discrepancy of decadal variation of the
extratropical LS water vapor with satellite observations appear to
be due to weak relationship between water vapor and tropopause
temperatures.

In climate models (e.g., WCAM and GISS IE), warmer of the
tropopause temperature appear to contribute to perhaps spurious
wetting the of the extratropical LS.



